Simulations of the Nozzle Panel Forming Process Using ABAQUS

by Jim Mahoney (AS/FM&T)

AlliedSignal Inc.,
Federal Manufacturing & Technologies
is operated for the U.S. Department
of Energy under contract number
DE-ACO4-76DP00613

Overview

- Recap of overall simulation process
- Forming simulations and trials
- Resources utilized for process
- Overall benefit/expense for this type application

Simulation Process

- Cad translation to FEA complete (08/95)
- Initial meshes of blank, holders, and Dies (10/95)
- Explicit dynamic preliminary forming (12/96)
- Iterations on loadings and timing (02-3/96)
- Elastic rebound for net shape (03/96)

Simulation Input

- Blank geometry
- Die geometries
- Blank material/condition
- Press forming rates
- Blank cushion pressure

Simulation Output

- Forming loads
- Final part shape
- Material Damage

Sheet Metal Nozzle Panel Forming

Sheet Metal Nozzle Panel Forming

Simulation Trials Performed

- 20-30 runs processed
- 0.032" Inconel 718 blank
- Varying cushion preload
- 0.05 blank/die friction
- time independent modeling

Ref: clamp21 run

Ref: clamp23 run

Effective Plastic Strains @ final form - 50T cushion

Ref: clamp21 run

Effective Strain in corner (max)

Strain
0.521
0.889
0.979

Ref: clamp21 run

Final Shape - Explicit w/Implicit rebound

FEA Simulation

Actual Part

Simulation Times

	Cray J-90	Sun Sparc 20
Cushion Preload*	2:45	5:00
Forming ~ 2"	6:00	12:00
Rebound (Implicit)	2:00	4:00

Simulation times varies from 0.5 to 59 hrs, depending on dynamic response of system

^{*}cpu times in hrs

Elastic Rebound of bead area

Ref: clamp21 run

Wrinkling

Cushion load - 3000 lbs

Simulation Results Comparison between test and analysis

- Strains in nose areas highest unknown failure point
- Strains in transverse bead high but not alarming
- Lower cushion pressures caused slight blank wrinkling - poor correlation to test data point
- Elastic rebound in part matches twisted shape found in testing
- Little elastic rebound in bead area

Simulation flowtime

For this panel.....

Preprocessing CAD data 8 weeks
Preparing meshes 6 weeks
Solutions 20 weeks

total - 34 weeks

Issues -

- CAD processing almost eliminated in solid case
- Mesh process 2X too long because of CAD data
- Solutions could be compressed under full-time scenario *Optimistic 3 month flow*

Is this computer simulation technology ready for design-for-manufacturing on these type parts?

Pro's -

- Understanding problem areas
- Elastic rebound simple
- Aids in material selections/conditions

Con's -

- Long processing times
- Experience analysts needed for simulations
- Correlation for wrinkling unknown
- 3-4 month flow (at best) for baseline results
- Too slow for parametric feedback

